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In the continuum limit of our discrete Hamiltonian, nonlinear Klein-Gordon equation was derived that gave rise to slower 
tanh and faster sech soliton solutions while doing the stability analysis as a function of both spatial (x) and time (t) variables. 
For these solitons a critical field was worked out at non-zero polarization and field so that the soliton motion can prevail in 
the ferroelectric devices. This non-dimensional critical field gives rise to the applied field (Emax) for a nano device of 100 nm 
thickness that shows interesting behavior against Landau coefficient, which depends on impurity contents. Again, in the 
discrete case, discrete breathers have been observed due to nonlinearity. Hence, to investigate the above phenomenon in 
nano-devices, we take two-phonon bound states, i.e. quantum route and calculate various parameters, which when plotted 
against Landau coefficient for various Emax shows a transition behavior around a particular impurity content indicating easier 
switching hitherto not done. This new approach reveals an interesting aspect for nanoelectronic device manufacture based 
on ferroelectrics.  
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1. Introduction 
 
Below Curie temperature, certain perovskites show 

important ferroelectric behaviour, which have a wide 
range of applications, notably in non-linear photonic 
devices and as non-volatile memory [1-5]. Previously, a 
Klein-Gordon (KG) equation has been derived based on a 
discrete Hamiltonian [6], and also on a continuum limit [7] 
in important photonic materials such as lithium niobate 
and lithium tantalate. The Landau-Ginzburg free energy 
functional has been taken as the potential energy in both 
cases in terms of two-well nonlinear potential 
formulations. The ‘analytical solution’ of K-G equation 
gave both low velocity (tanh) and high velocity (sech) 
solitons in such photonic materials. An extensive 
description of the behavior of different solitons has been 
given by Dauxois and Peyrard [8]. The stability of these 
solitons, i.e. up to what field such solitons exist, has been 
worked out in order to find a critical field, which has not 
been attempted so far in actual photonic crystals with 
implications for device applications [6].  

The ferroelectric behaviour is mostly guided by the 
formation of domains and domain walls and their rotation 
with the field. Several impressive studies have been made 
by Vanderbilt et al [9,10] on the ab initio calculation of 
domain growth kinetics and domain wall movement, and 
the apparent domain width was worked out on a time-
averaged scale, which are based on rather wide spatial 
excursions taken by such domain walls. In this paper, 
although the interplay of domain width and critical field is 
not explicitly elaborated, it is assumed that impurities 
create some sort of difficulty in the domain rotation, or 

rather with an increase in domain width (i.e. a decrease of 
domain wall width) there is an increase of the coercive 
field (Ec) [11-15] In an important work on simulation of 
cracks in ferroelectrics, it was found that both the 
hysteresis and coercive field were greatly affected by the 
ratio of the characteristic length to domain wall width, and 
hence exemplifying the greater role of domains and 
domain walls [16]. The preparation techniques of different 
ferroelectric materials may also affect the properties in 
terms of distribution of defects (or impurities) in the 
domain walls [17] that was also shown to be important by 
Scott and co-workers [18,19]. In a recent work by 
Bandyopadhyay and co-workers for the effect of damping 
on switching behaviour, the importance of domains and 
domain walls was also shown [20]. 

A prominent feature of domain wall is explained by a 
soliton solution, i.e. nonlinear localized traveling waves 
that are robust and propagate without change in shape, 
giving the polarization profile and the distribution of the 
elastic strain across the domain wall. On the other hand, 
DBs are discrete solutions, periodic in time and localized 
in space, and whose frequencies extend outside the phonon 
spectrum. As the existence of DB has already been shown 
in case of a discrete Hamiltonian [6,11], it was also 
considered very important to show the physical overview 
of such classical breathers in 3-dimensions in lithium 
niobate type of inhomogeneous ferroelectrics [21] as a 
function of some important controlling parameters, even to 
the extent of revealing the presence of bi- and tri-breathers 
that has not been attempted in Ref [11]. An extensive 
research on dynamics of domain walls in elastic 
ferromagnets and ferroelectrics was done by Kivshar et al. 
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[22] by employing sine-Gordon equation coupled to 
D’Alembert equation for interacting longitudinal and 
transverse acoustic waves for ‘localization’ in nonlinear 
discrete lattice. For dielectrically soft matrix, Bussman-
Holder et al. [23] studied Relaxor ferroelectrics with 
intrinsic inhomogeneity. Here, some points need to be 
mentioned about localization. 

Localization in a system is attributed either to its 
impurity/disorder or to its nonlinearity [24]. This 
phenomenon in terms of Anderson localization has been 
implemented in details in many types of device 
applications. As the nonlinearity arises in ferroelectrics in 
terms of P-E hysteresis due to the rotational movement of 
the discrete domains and domain walls, it also gives rise to 
the localization. DBs seem to be quite versatile in 
managing localized energy, i.e. in targeted energy transfer 
or trigger mechanism [25]. They can transport this energy 
efficiently by engaging the lattice in their motion after 
DBs are formed, and moreover, under specific 
circumstances they can transfer this energy in selected 
lattices [26,27]. Combining these facts from model as well 
as some more general studies, it can be written that DBs in 
ferroelctrics could in principle act as an able energy 
manager [28]. As we are primarily concerned with the 
explanation of critical soliton motion through two-phonon 
bound state, i.e. quantum route, some of the important 
works about the phonons are listed below in a non-
exhaustive literature search. 

 Corso et al. did an extensive study of density 
functional perturbation theory for lattice dynamics 
calculations in a variety of materials including 
ferroelectrics [29]. They employed a nonlinear approach to 
mainly evaluate the exchange and correlation energy, 
which were related to the non-linear optical susceptibility 
of a material at low frequency [30]. The phonon dispersion 
relation of ferroelectrics was also studied extensively by 
Ghosez et al [31,32]; these data were, however, related 
more with the structure and metal-oxygen bonds rather 
than domain vibrations or soliton motion. In a very 
interesting work, a second peak (as previously observed by 
Krishnan in the Raman Spectra) was interpreted  by Cohen 
and Ruvalds [33] as evidence for the existence of ‘bound 
state’ of the two phonon system and the repulsive 
anharmonic phonon-phonon interaction which splits the 
bound state off the phonon continuum was estimated for 
diamond.     

A femtosecond time-domain analog of light-scattering 

spectroscopy called impulsive stimulated Raman 
scattering (ISRS) is a very useful technique that has been 
used by Nelson and co-workers [34] in dealing with the 
anharmonic vibrations in both lithium niobate and lithium 
tantalate crystals (see the references therein). A powerful 
technique, such as molecular-dynamics simulations of 
vibrational wave packets, was used by Phillpot and co-
workers [35] to study the scattering of longitudinal-
acoustic modes and predicted that the presence of gaps in 
the phonon spectrum of thin high-symmetry nanowires 
will result in a complete reflection of phonons at the 
interfaces.  

A brief account is given here on phonon bound state 
or breather state. Despite our work on discrete breathers 
[11], so far the soliton motion in ferroelectrics has been 
explained classically, thereby making us think about 
quantum route, which has been attempted in the present 
work. Hence, to explain the dependence of criticality of 
soliton motion on nonlinearity, it is relevant to consider 
detailed information on phonons [36] and their bound state 
concept, which is sensitive to impurity content in the 
lattice. Let us consider that the phonons in one sublattice 
may hop from one domain to another adjacent domain. 
This hopping might have some consequences with the 
change of impurity content in the entire crystal that has a 
relation with the nonlinearity parameter, thereby the 
‘hopping strength’ can be directly related to the Landau 
coefficient [27]. It is determined by finding the phonon 
energy gap in the energy-spectrum by analyzing the 
quantum-breather state [37,38] (see references therein) or 
phonon bound state. Thus, the objective of this paper is to 
explore how nonlinearity parameter influences the soliton 
motion or its criticality by quantum calculations hitherto 
not done. Therefore, the hopping strength of phonon and 
thus the phonon energy gap are derived from the quantized 
model of the ferroelectrics. In this new approach, the 
calculations of various parameters related to phonon 
bound states, or breather states, have been made against 
Landau coefficients i.e. at different impurity contents, to 
highlight the quantum origin of this phenomenon in 
ferroelectrics, which have implications in various 
ferroelectric devices including many nano devices.  

The paper is organized as follows: in Section 2, brief 
theoretical background is given for both the continuum 
limit for critical soliton motion and phonon bound state for 
relevant parameters, and in Section 3 important results are 
shown whereby the dependence of this critical field on 
nonlinearity parameter for the continuum case (Section 
3.1) as well as the relation of different parameters 
concerning phonon bound state on nonlinearity (Section 
3.2). Here the results are shown for lithium niobate 
ferroelectrics against nonlinearity, i.e. with wide range of 
impurity contents, and also for some other ferroelectrics 
where the nonlinearity parameters are known. In Section 4, 
the conclusions are given. 

 
 
2. Theoretical aspect 
 
Here, first of all, we discuss the theoretical aspect of 

our discrete Hamiltonian in the continuum limit to find out 
the critical value for soliton motion and then deal with 
phonon bound state or discrete breather state to explain the 
possible dependence of criticality on the Landau 
coefficient through quantum route. 

 
2.1. Continuum Limit: 
 
The nearest neighbor domains [i.e. the polarization in 

the i-th domain (Pi) with that in the (i-1)th domain (P i - 1 ) ]  
were taken to interact by a harmonic potential with a 
phenomenological spring constant k so that the  resulting  
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discrete Hamiltonian for the polarization is given by [6]: 
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Here, α1 and α2 are Landau coefficients that have 

important implications in the formation of discrete 
breathers (see later) and E is the applied field. The 
momentum (pi) can be defined in terms of order parameter 
(Pi) as: 

i
d

d
i

d

d
i P

Q
mP

Q
m

t
p &

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=     (2) 

 
where md and Qd are two inertial constants. Eq. (1) can be 
approximated by a continuum treatment through Taylor 
expansion. In this limit, expressed in dimensionless units, 
for the evolution of polarization (P) with both space (x) 
and time (t),  Eq. (1) yields a nonlinear Klein-Gordon 
equation with a non-dimensional damping term as [6]: 
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for the dynamics of polarization P(x,t). All the terms in Eq. 
(3) with their possible range of values are given in Ref. 
[21]. Eq. (3) is obtained by taking α1 = α2/Ps
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and damping terms are defined as: 
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where γ  is a decay constant relating the loss of 
polarization due to internal friction during its motion in the 
system of domains. 

It should be noted that in Eq. (3), since the non-
dimensional E contains the switching field Ec that is again 
dependent on the impurity contents in an inhomogeneous 
ferroelectric material [11,14], our above treatment thus 
embodies the impurities. Therefore, the study of the 
critical field for the stability of the solitons as a function of 
the impurity content is relevant in a real inhomogeneous 
system. Equivalently, as Ec directly varies with impurity 
[14] and it is inversely proportional to the Landau 
coefficient as mentioned above, we will operate through 
the latter to give a better description of phonon bound state 
(see later), as it is dependent on nonlinearity. Based on the 
above K-G equation, a stability analysis for the existence 
of the solitons was done in an actual situation for photonic 

device applications where E ≠ 0 and 0≠γ . In this case, a 
situation is described in order to see under what condition 
the soliton exists in our ferroelectric system, such as 
lithium niobate: 

Let us do a transformation of variables with 1θ   as:  
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The stationary points of a system of equations (7) are 
given by: 

0φ =       (10a) 
and, 
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For the three real and distinct roots of equation 
(10b), the following condition has to be satisfied: 
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The equation (11) gives rise to: 
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This is the required condition for the existence of the 

solitons with stationary velocity for our ferroelectric 
system. At this condition, two of the stationary points of 
the system of equations (7) disappear, and no soliton exists 
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for 
_ _

.k V k< . This could mean that it is related with 

a break-up of the double-well potential to a single-well at 
high electric fields. Here, we also note that how the 
nonlinearity or, Landau coefficients are important in 
deciding the critical value of electric field for the existence 
of solitons in our ferroelectric system. Although not shown 
here, for the existence of the solitons, the condition (11) 

still holds for  
_ _

.k V k> , i. e. the solitons with higher 

velocity also do not exist after this critical electric field. 
Therefore, from the above description it is clear that the 
solitons with stationary velocity exist when the magnitude 
of the field (E) is less than a critical value in ferroelectric 
materials, such as lithium niobate. Similar condition will 
also enable us to establish the existence of solitons with 
stationary velocity for lithium tantalate that is also very 
important material in opto-electronic devices. This is not 
derived here to avoid repetition. 

The above non-dimensional critical field is calculated 
for a particular sample by taking Ec = 40 kV/cm and Ps = 
0.75 C/m2 [12]. Therefore, from the so-called ‘material 
parameters, such as Ec and Ps, it is possible to calculate 
the critical field for our type of photonic crystals with a 
wide variety of impurity contents (read, Ec). It is also 
possible to do the same calculation for other ferroelectrics 
in order to see the effect of impurities/nonlinearity induced 
modes on the soliton motion in such photonic materials, 
which are in most cases non-stoichiometric. It may be 
mentioned that the soliton motion is generally considered 
at room temperature for device applications. So, we take 
the room temperature value of  Ps as 0.75 C/m2 throughout 
our calculations at different Ec values. 

This critical value could be considered as the limit of 
thermodynamic coercive field that is calculated from the 
Landau-Ginzburg (L-G) theory for the second order phase 
transition, which is known to be much larger than the 
experimentally observed value [6,7]. An attempt to explain 
this behaviour was made by Kim et al. [12] and Yan et al. 
[14]. Many authors feel that it could be due to pinning 
effect of impurities that are present in the near-
stoichiometric to congruent crystals that are studied by us, 
since the thermodynamic coercive field is usually referred 
to the ‘homogeneous switching’ of the ferroelectrics 
sample as a whole. Next, to be able to relate the 
dependence of this critical behavior of soliton motion on 
nonlinearity, we discuss the application of phonon bound 
states or discrete breathers state through quantum route 
with the help of our discrete Hamiltonian. 

 
 
2.2. Phonon bound state 
 
Eq. (1) gives a general treatment of the mode 

dynamics in the array, particularly for modes, w h i ch  are 
strongly localized over a small number of the domains in 
the array.  For extended modes and modes which are 

localized, and slowly range over a large number of 
consecutive domains. The discrete Hamiltonian (Eq. (1)) 
can be split as:  10

~ HHH += . 
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Here, λ is used as an interaction term instead of k as in Eq. 
(1). Hence, for n-particles or n-levels in the anharmonic 
potential well, a general basis may be written as: 
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The numerical analysis was carried out with Fourier grid 
Hamiltonian method [39] (1000 grids, 0.006 spacing) to 
calculate various eigenvalues and eigenvectors. We restrict 
ourselves to two phonon states, since at the working 
temperature the number of phonon is less. In order to 
reduce the computer memory requirement, we take the 
advantage of translational invariance by Bloch wave 

formulation: >>= ∑
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With this basis, we can derive the eigenenergies for each 
given Bloch wave number q from: 

>>= nnq EH ψψ || . Hence, Eq. (15) reduces to:  
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imψ ’s and iE ’s are eigenvectors and eigenvalues 
obtained from Fourier grid Hamiltonian method. Here, due 
to symmetric and asymmetric nature of the eigenfunctions 

0=mnD , if ( ) 0=− nm . Hence, for a two-phonons 
case, the non-zero hopping coefficients are: 

21121001 , DDDD == . The energy gap between the 
single phonon continuum and a bound state is given by:  
 

( )0102 2 EEEEEg −−−=   (19) 
 

Typical eigenspectra are shown in Fig. 2 and 3. The 
width of the single-phonon in the eigenspectrum is given 
by the magnitude of  4σ, where σ is expressed as:  
 

2
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D01 represents the coefficient for zero to single phonon 
generation. The variation of the single phonon spectrum 
width ( phW ) represents (through 1001 DD = ) the creation 
of a new phonon or annihilation of an existing phonon. 
Again, the hopping coefficient for a single phonon to 
become a two-phonon single state or bound state and vice-
versa is given by: 
 

21101201 22
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All the above calculations were done for 51 sites or 
domains and λ = 12. More data points could be used in our 
present simulation, but here we are primarily focused to 
study nonlinearity/impurity induced critical behavior of 
soliton motion and its quantum origin. To treat the 
problem analytically we take the help of second-
quantization method as follows:  
The basis for just two phonons can be written as:  
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where nm,Ψ are the occupation probability amplitudes of 
the sites m and n respectively and the boson nature of 
phonons and normalization conditions yield 
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the basis into the Schrodinger equation 
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quantizing the Hamiltonian in Eq. 1 in a number 
conserving quantized form with N→∞ [40] with 
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to the equation for bi-phonon amplitudes as shown in Eq. 
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Using lattice periodicity, we may express the amplitudes 

nm,Ψ  with nml −=  as: 
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where 21 kkK += represents the total quasi-momentum 
associated with the motion of the two-phonon center of 
mass and belonging to the first Brillouin zone. Here, ϕ  is 
the function of distance between two phonons. As a result 
of lattice periodicity Eq. 24 may be written as:  
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Here, Eq. 25 represents a system of linear algebraic 
equations for amplitudes lϕ  for each l. Expanding lϕ  in 
complex  Fourier series: 
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where qf ’s are Fourier coefficients needed to get the 

complete series for  lϕ  and substituting in Eq. 25 yields: 
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where, 
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Here, ( )qK,ξ  represents the energy of two free phonons. 
The final Eq. 27 is an eigenvalue problem for the two-
phonon and is an integral equation for the function of qf  
and may be solved using standard numerical techniques. 
Now, for a two-phonon bound state (TBPS), 1>ΛK . 
Hence, for affixed total quasi-momentum K, the critical 
α -value or Landau parameter may be calculated as:  
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Hence, for a LiNbO3 type ferroelectrics, after TBPSα , a 
branch is separated from the continuum due to 
corresponding impurity content and has got a critical point 
for pinning transition. Now, for bound state m = n and the 
bound state energy (EBS) can be derived as:  
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Taking cosine term as unity and substituting the values of 
η , 1λ gives 

λα
α
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3. Results and discussion 
 
First of all, let us discuss about the results of 

maximum field to be applied in a device against 
nonlinearity parameter and then we deal with different 
parameters related to two-phonon bound state (TPBS) to 
find out why at a certain value of the nonlinearity 
parameter, the behavior of phonon energy gap is different. 

 
3.1. Continuum case 
 
The values of Ec and Ps for lithium niobate with a 

wide variety of impurity contents are taken from Ref. [14], 
wherein some data of Gopalan et al are also included. The 
data for lithium tantalate are taken from Tian et al [13]. 
For photonic device applications, it is important to know 
the value of the applied electric field so that the soliton 
motion prevails in the system. If we multiply the non-

dimensional critical field by Ec, we get the maximum 
value of the applied field (Emax) in V/nm to be used in the 
device. The values of Emax in Volts (say, for a 100 nm thin 
device) are plotted against the Landau coefficient for 
lithium niobate in Fig. 1. It is seen that after somewhat 
steeper decrease, it almost saturates towards the congruent 
side. It is interesting to note that at the α value at around 
350-400 corresponding to a value of Ec = 40 – 44 kV/cm, 
the pinning of the domains might start and then becomes 
stronger making the domain rotation difficult, i.e. quite 
stiffer, which is accompanied by an increase of Ec values, 
i.e. increasing impurity content.  

 

 
Fig. 1. Maximum applied field value against α  

showing 
asymptotic behavior after a particular point 

corresponding to a value of Ec = 40-44 kV/cm 
 
 
Regarding the change of slope and this optimum point 

of this curves around 40-44 kV/cm (i.e. impurity content 
of 0.133 to 0.265 mole %), an explanation can be given as 
follows:  

Domain dynamics [12,13,17] is interpreted by domain 
reversal phenomenon. Domain reversal takes place in two 
steps: nucleation and sideways growth. According to 
Gopalan et al [41] the nucleation rate is almost equal to 
zero in the low field regime, so the reversal of domain is 
only initiated in terms of growth of some pre-existing 
nucleus as evident from many experiments [42,43]. These 
micro-domains may play the role of nucleus. According to 
some other works, the motion of the domain wall in near-
stoichiometric lithium niobate shows jerky behavior 
during sideways-growth in the low field regime that was 
attributed to the pinning role of intrinsic defects [44-46]. 
Hence, the growth is baffled by the intrinsic defects and 
can be completed only when the poling field applied on 
the crystal is large enough for the domain to overcome this 
difficulty by intrinsic defects. As explained above, the 
defect structure [11,12] assumes a more important role in 
the manifestation of different values of Emax for different 
ferroelectrics as a function of impurity.  This has been 
explained in details in Ref. [11, 20].  

For lithium tantalate, the values of Emax  are found to 
be 27.43-29.98 V/100nm between Ec values: 1.61 kV/cm 
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(near-stoichiometric) to 210 kV/cm (congruent). Since the 
impurity contents are not known with precision and 
moreover due to the paucity of data in the intermediate 
range, the values are not plotted here. However, for this 
photonic crystal that is more popular in the device 
applications due to lower Ec values, the effect of impurity 
on Emax does not seem to be as pronounced between the 
two extreme values of Ec (i.e. from near-stoichiometric to 
congruent) as in the lithium niobate. It is assumed that the 
K-G equation with Landau potential is applicable in such 
photonic materials. Moreover, there is no significant 
dependence of Ps on the impurity. 

It is pertinent to mention that no strain effect has been 
included in our analysis, which has been considered by 
many authors. In our case, it is normalized into the 
relevant coefficients of the Landau potential, as also done 
in a previous dynamic analysis of both dark and white 
solitons [7]. This is also valid in our multiple time scale 
analysis for different linear and non-linear plane wave 
excitations and intrinsic localized modes in lithium niobate 
ferroelectrics, where the impurity dependence of the 
former is also quite pronounced [11]. This critical field 
may be explained in terms of symmetry breaking in the 
Landau potential, whereby it has been observed that at a 
non-dimensional field value of around 135, the two-well 
Landau potential gives rise to a single well. At a value of 
100, the left hand side well is barely discernible leading to 
a break-up of the potential, as shown in Fig. 1 of Ref. [47]. 
It has also been emphasized in the Ref. [47] that as the 
field is increased, the ferroelectric system tends to go 
towards a chaotic situation. For the analysis of chaos by 
K-G equation with an ac driver, a direct proof can be given 
by the Lyapunov exponent spectrum, if we assume that 
when 0

_
⇒k , i.e. x is very small indicating nano-

domains, the K-G equation (Eq. 3) tends to become a 
heavily damped Duffing oscillator equation [20]. In such a 
situation, one of the exponents tends to go to the positive 
domain indicating instability in the soliton motion, i.e. at a 
critical value of 135.85 (Eq. 12), there is no existence of 
solitons in our system of ferroelectrics [47]. However, by 
using the K-G equation based on the Landau potential and 
the soliton stability, the dependence of the critical field on 
nonlinearity (read, impurity) is definitely shown in this 
work with important consequences in the applications of 
nanoelectronic device manufacture of these ferroelectric 
materials as photonic devices.  

 
3.2 Different Parameters of TPBS: 
 
For our simulation work, we take just two phonons 

because at working temperatures the number of phonons 
are very less. Now, due to nonlinearity in the system, some 
single phonons form a bound state of phonons, which is a 
characteristic property of particular ferroelectric material 
with a specific impurity content. After estimating the Emax 
value, we put these values in the Hamiltonian (Eq. 1) 
along with corresponding Landau coefficient values, i.e. 
nonlinearity.  

 

Hence, the eigenspectrum is a signature of the 
material response. Moreover, we basically observe two 
important aspects of such plots, namely phonon band gap 
and delocalized phonon width, which are again 
characteristic features with a ferroelectric with particular 
impurity content. Typical eigenspectra with 

09.1767=α  and 42.353=α  are shown in Fig. 2 and 
Fig. 3 respectively. The transition point with respect to 
phonon band gap (Eg), i.e. the gap between localized and 
delocalized phonons, width of delocalized phonon (Wph), 
i.e. the range of eigenenergy in which the single phonons 
have been confined and the single to bi-phonon hopping 
coefficient (µ ) are observed in Figs. 4, 5 and 6 
respectively.  

 
 

 
 

Fig. 2. Typical energy spectrum for 09.1767=α  
showing localized phonon energy band with a band gap  
                                         |Eg| = 0.190. 

 
 

 
 

Fig. 3. Typical energy spectrum for 42.353=α showing 
localized phonon energy band with a band gap                

|Eg| = 0.070. 
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Fig. 4. Energy gap (Eg) vs α  showing a critical point 
around α = 350 after which the energy gap becomes 

almost constant with respect to α. 
 

 
Fig. 5. Width of single phonon (Wph)  vs Lanadau 

coefficient (α) showing a critical point . 
 
 

 
 

Fig. 6. The hopping coefficient (µ) against the Landau 
coefficient (α ). 

 
 

In Fig. 4, it is seen that the phonon band gap remain 
almost constant up to a value of Landau coefficient of 
about 350 (corresponding to a value of Ec = 40-44 kV/cm), 
and then it increases very sharply towards lower values of 
α (read, nonlinearity). Due to this sharp increase at this 
point, the domain rotation could be difficult and a pinning 
mechanism might start after Ec = 40-44 kV/cm All these 
acid tests are necessary and almost sufficient tests for this 
point where phonons can very easily form TBPS after 
which it becomes increasingly difficult for forming the 
TBPS due to pinning effect of impurity. In Fig. 5, the 
width of the single phonon continuum shows a little 
increase towards lower α value of about 350 and then it 
decreases steeply towards further lower values. Fig. 6 
shows the same general trend for the hopping coefficient 
(µ) of phonons. Both Fig. 5 and Fig. 6 confirm the 
behaviour, as manifested in Fig. 4. So, in a practical case 
of maximum applied field, i.e. when soliton motion will 
prevail in the system, we confirm a point of nonlinearity, 
i.e. a particular impurity content or Ec value, where it is 
easiest to switch with respect to other higher points that 
should be of great importance for device manufacturers. 
Although the quantum calculations have been done for 
LiNbO3, it could be claimed that such behavior should also 
be observed for other ferroelectrics because they more or 
less follow our generalized discrete Hamiltonian.  

 
 
4. Conclusions 
 
The stability of the solitons in photonic crystals, i. e. 

up to what field the solitons exist in such systems, is very 
important for device applications in terms of estimating 
the maximum voltage to be applied in a given non-linear 
photonic device of, say, 100 nm thickness. For a given 
crystal such as lithium niobate with varying impurity 
contents, there is a beginning of pinning effect in the 
initial range of stoichiometry, i.e. higher side of 
nonlinearity and then there is a sort of difficulty for 
domain rotations towards the congruent side, when the 
maximum required voltage keeps on increasing to sustain 
soliton motion. This point of pinning seems to arise from 
the two-phonon bound states (TPBS) in lithium niobate 
ferroelectrics, indicating the origin of this process in terms 
of quantum discrete breathers that will have an implication 
on devices. since easier is the formation of TPBS, the 
easier is switching, as observed with the experimental data 
[11]. Various parameters related to TPBS have been 
calculated and then plotted against the Landau coefficient 
hitherto not done. This approach might be useful to 
explain some other physical behaviour of ferroelectric 
materials in terms of TBPS. 
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